China supplier Custom Steel Material Rigid Shaft Flexible Spring Shaft Coupling Snake Grid Coupling

Product Description

Steel Material Rigid Shaft Flexible Spring Shaft Snake Grid Coupling

Description:

It is a kind of metal elastic variable stiffness coupling with advanced structure ,which transmits torque by serpentine spring plate embedded in the tooth groove of 2 half couplings ,mainly composed of 2 half couplings,two half covers,two sealing rings and serpentine spring plate.

 

Feature

1.The serpentine spring as the elastic element, the elastic strong at the same time, greatly improves the grid coupling torque, widely used in heavy machinery and general    machinery.The serpentine spring special technology department, has long service life, allowing higher speed, has good ability to compensate in the axial, radial and angle

2.High transmission efficiency, start safety. Transmission efficiency of up to 99.47%, short-time overload capacity is 2 times the rated torque, operation safety.

3.Simple structure, convenient assembly and disassembly, long service life.

4.Damping effect is good to avoid the resonance.

Details


 

Basic Parameter

 

Model Nominal Speed Y,Z Bore L L2 D C KG    
Torque r/min d1,d2 J Grease
Nm   Max Min KG.M2 Kg
JS1 45 4500 28 18 47 66 95 3 1.91 0.00141 0.5712
JS2 140 35 22 47 68 105 2.59 0.057123 0.0408
JS3 224 42 25 50 70 115 3.36 0.00327 0.0544
JS4 400 50 32 60 80 130 5.45 0.00727 0.068
JS5 630 4350 56 40 63 92 150 7.26 0.00119 0.0862
JS6 900 4125 65 40 76 95 160 10.44 0.0185 0.113
JS7 1800 3600 80 55 89 116 190 17.7 0.571 0.172
JS8 3150 95 65 98 122 210 25.42 0.0787 0.254
JS9 5600 2440 110 75 120 155 250 5 42.22 0.178 0.426
JS10 8000 2250 120 85 127 162 270 54.45 0.27 0.505
JS11 12500 2571 140 90 149 192 310 6 81.27 0.514 0.735
JS12 18000 1800 170 110 162 195 346 121 0.989 0.908
JS13 25000 1650 200 120 184 201 384 178 1.85 1.135
JS14 35500 1500 200 140 183 271 450 234.26 3.49 1.952
JS15 50000 1350 240 160 198 279 500 316.89 5.82 2.815
JS16 63000 1225 280 180 216 304 566 6 448.1 10.4 3.496
JS17 90000 1100 300 200 239 322 630 619.71 18.3 3.76
JS18 125000 1050 320 240 260 356 675 776.34 26.1 4.4
JS19 160000 900 360 280 280 355 756 1058.27 43.5 5.63
JS20 224000 820 380 300 305 432 845 13 1425.56 75.5 10.53
JS21 315000 730 420 320 325 490 920 1786.49 113 16.07
JS22 400000 680 450 340 345 546 1000 2268.64 175 24.06
JS23 500000 630 480 360 368 648 1087 2950.82 339 33.82
JS24 630000 580 460 400 401 698 1180 3936.3 524 50.17
JS25 800000 540 500 420 432 762 1260 4686.19 711 67.24

 

Production workshop

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

grip coupling

How to Select the Right Motor Coupling for Specific Torque and Speed Requirements

Selecting the right motor coupling for specific torque and speed requirements is crucial to ensure efficient power transmission and avoid premature failure. Here are the steps to help you make an informed coupling selection:

  1. Identify Torque and Speed Requirements: Determine the maximum torque and speed (RPM) demands of the driven equipment. Torque is typically given in pound-feet (lb-ft) or Newton-meters (Nm), while speed is measured in revolutions per minute (RPM).
  2. Consider Service Factor: Factor in the service conditions and potential overload situations to calculate the required torque capacity of the coupling. The service factor is a safety margin applied to the calculated torque to ensure the coupling can handle occasional peak loads or unexpected shock loads.
  3. Define Misalignment: Assess the potential misalignments that may occur between the motor and driven shafts. Determine the angular, parallel, and axial misalignment expected during operation.
  4. Choose Coupling Type: Based on the torque and speed requirements, as well as misalignment considerations, choose the appropriate coupling type. Different coupling types, such as elastomeric, grid, gear, or disc couplings, offer various torque capacities and misalignment capabilities.
  5. Material Selection: Consider the environmental conditions and the properties of the materials used in the coupling. Factors like temperature, chemical exposure, and corrosion resistance should be taken into account when choosing coupling materials.
  6. Check Size and Dimensions: Ensure that the selected coupling’s size and dimensions are compatible with the motor and driven equipment’s shaft sizes and connection requirements.
  7. Consult Manufacturer’s Catalog: Refer to the manufacturer’s catalog or coupling datasheets for detailed technical information, torque-speed curves, and misalignment data to match your specific application requirements.
  8. Factor in Cost and Longevity: Evaluate the cost-effectiveness and expected service life of the coupling. A higher initial investment in a high-quality coupling may result in longer service life and reduced maintenance costs in the long run.
  9. Seek Expert Advice: If you are unsure about the best coupling for your application, consult with coupling manufacturers or industry experts who can provide recommendations based on your specific requirements.

By following these steps and carefully evaluating your torque and speed requirements, as well as misalignment considerations, you can select the right motor coupling that ensures reliable and efficient power transmission in your mechanical system.

grip coupling

How to identify signs of wear or failure in a motor coupling?

Identifying signs of wear or failure in a motor coupling is essential for maintaining the efficiency and reliability of a mechanical system. Here are some common indicators to look for:

1. Visual Inspection:

Perform a visual inspection of the motor coupling regularly. Look for any of the following signs:

  • Cracks or deformations in the coupling body
  • Corrosion or rust on the coupling surface
  • Visible signs of misalignment between the shafts
  • Excessive wear on the coupling teeth or flanges

2. Abnormal Vibrations:

Unusual vibrations or shaking during motor operation can indicate an issue with the coupling. Excessive play due to wear or misalignment can lead to vibrations that affect the overall system’s performance.

3. Noises:

Listen for any unusual noises, such as clunking, clicking, or rattling sounds during motor operation. These noises could be an indication of loose or damaged coupling components.

4. Misalignment:

Check for shaft misalignment between the motor and driven load. Misalignment can lead to uneven distribution of forces, causing premature wear and failure of the coupling.

5. Increased Friction and Heat:

Feel for any excessive heat generated during motor operation. Increased friction due to misalignment or wear can cause the coupling to overheat.

6. Reduced Performance:

If you notice a decrease in the motor’s performance or efficiency, it could be a sign of coupling wear or failure. Reduced torque transmission or increased power losses may be evident.

7. Shaft Movement:

Check for any axial movement in the motor and driven load shafts. Axial play can indicate a worn or damaged coupling that needs attention.

If you observe any of these signs, it is crucial to address the issue promptly. Regular maintenance, including lubrication and alignment checks, can help prevent coupling failures and extend the coupling’s lifespan. If the coupling shows significant signs of wear or damage, consider replacing it with a new one to ensure optimal performance and avoid costly breakdowns in the future.

“`grip coupling

How to Properly Install a Grid Coupling for Reliable Performance

Proper installation of a grid coupling is crucial for ensuring reliable performance and maximizing its lifespan. Here are the steps to install a grid coupling correctly:

  1. Preparation: Before installation, ensure that the shafts and coupling hubs are clean and free from any debris or contaminants. Inspect the grid coupling and its components for any signs of damage or wear.
  2. Align the Shafts: Make sure that the shafts to be connected are properly aligned. Grid couplings can accommodate some degree of misalignment, but it is essential to minimize it for optimal performance.
  3. Assemble the Grid: Insert the serrated grid element between the two coupling hubs. Ensure that the grid is centered and aligned with the hubs’ teeth.
  4. Tighten the Fasteners: Use the appropriate torque wrench to tighten the fasteners that secure the coupling hubs together. Follow the manufacturer’s recommended torque values to avoid over-tightening or under-tightening.
  5. Check Runout: After installation, check the coupling’s runout by rotating the connected shafts. Excessive runout indicates a potential misalignment or installation issue.
  6. Lubrication: Some grid couplings require lubrication for optimal performance. Refer to the manufacturer’s guidelines and apply the recommended lubricant to the coupling components.
  7. Check for Smooth Operation: Start the machinery and observe the coupling’s operation. Listen for any unusual noises or vibrations that may indicate a problem. If any issues are detected, stop the machinery and inspect the coupling again.
  8. Regular Maintenance: Schedule regular maintenance checks to ensure the coupling’s ongoing reliability. Inspect for signs of wear, misalignment, or damage, and replace any worn or damaged components as needed.

It is essential to follow the manufacturer’s installation guidelines and recommendations specific to the grid coupling model being used. Proper installation and regular maintenance will ensure the grid coupling performs reliably and efficiently, providing effective power transmission in industrial machinery and equipment.

China supplier Custom Steel Material Rigid Shaft Flexible Spring Shaft Coupling Snake Grid Coupling  China supplier Custom Steel Material Rigid Shaft Flexible Spring Shaft Coupling Snake Grid Coupling
editor by CX 2024-02-12

grid coupling

As one of leading grid coupling manufacturers, suppliers and exporters of products, We offer grid coupling and many other products.

Please contact us for details.

Mail:[email protected]

Manufacturer supplier exporter of grid coupling.

 

Recent Posts