China Custom Custom Steel Material Rigid Shaft Flexible Spring Shaft Coupling Snake Grid Coupling

Product Description

Steel Material Rigid Shaft Flexible Spring Shaft Snake Grid Coupling

Description:

It is a kind of metal elastic variable stiffness coupling with advanced structure ,which transmits torque by serpentine spring plate embedded in the tooth groove of 2 half couplings ,mainly composed of 2 half couplings,two half covers,two sealing rings and serpentine spring plate.

 

Feature

1.The serpentine spring as the elastic element, the elastic strong at the same time, greatly improves the grid coupling torque, widely used in heavy machinery and general    machinery.The serpentine spring special technology department, has long service life, allowing higher speed, has good ability to compensate in the axial, radial and angle

2.High transmission efficiency, start safety. Transmission efficiency of up to 99.47%, short-time overload capacity is 2 times the rated torque, operation safety.

3.Simple structure, convenient assembly and disassembly, long service life.

4.Damping effect is good to avoid the resonance.

Details


 

Basic Parameter

 

Model Nominal Speed Y,Z Bore L L2 D C KG    
Torque r/min d1,d2 J Grease
Nm   Max Min KG.M2 Kg
JS1 45 4500 28 18 47 66 95 3 1.91 0.00141 0.5712
JS2 140 35 22 47 68 105 2.59 0.057123 0.0408
JS3 224 42 25 50 70 115 3.36 0.00327 0.0544
JS4 400 50 32 60 80 130 5.45 0.00727 0.068
JS5 630 4350 56 40 63 92 150 7.26 0.00119 0.0862
JS6 900 4125 65 40 76 95 160 10.44 0.0185 0.113
JS7 1800 3600 80 55 89 116 190 17.7 0.571 0.172
JS8 3150 95 65 98 122 210 25.42 0.0787 0.254
JS9 5600 2440 110 75 120 155 250 5 42.22 0.178 0.426
JS10 8000 2250 120 85 127 162 270 54.45 0.27 0.505
JS11 12500 2571 140 90 149 192 310 6 81.27 0.514 0.735
JS12 18000 1800 170 110 162 195 346 121 0.989 0.908
JS13 25000 1650 200 120 184 201 384 178 1.85 1.135
JS14 35500 1500 200 140 183 271 450 234.26 3.49 1.952
JS15 50000 1350 240 160 198 279 500 316.89 5.82 2.815
JS16 63000 1225 280 180 216 304 566 6 448.1 10.4 3.496
JS17 90000 1100 300 200 239 322 630 619.71 18.3 3.76
JS18 125000 1050 320 240 260 356 675 776.34 26.1 4.4
JS19 160000 900 360 280 280 355 756 1058.27 43.5 5.63
JS20 224000 820 380 300 305 432 845 13 1425.56 75.5 10.53
JS21 315000 730 420 320 325 490 920 1786.49 113 16.07
JS22 400000 680 450 340 345 546 1000 2268.64 175 24.06
JS23 500000 630 480 360 368 648 1087 2950.82 339 33.82
JS24 630000 580 460 400 401 698 1180 3936.3 524 50.17
JS25 800000 540 500 420 432 762 1260 4686.19 711 67.24

 

Production workshop

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

grip coupling

Understanding the Torque and Misalignment Capabilities of Motor Couplings

Motor couplings play a critical role in transmitting torque from the motor to the driven equipment while accommodating certain degrees of misalignment between the motor and driven shafts. The torque and misalignment capabilities of motor couplings are essential factors to consider when selecting the appropriate coupling for a specific application.

Torque Capabilities:

The torque capacity of a motor coupling refers to its ability to handle the maximum amount of torque that can be transmitted through the coupling without causing failure or damage. Couplings are designed with specific torque ratings to ensure reliable power transmission.

The torque capacity of a motor coupling depends on factors such as the material used, the size and design of the coupling, and the application requirements. High-performance couplings made of robust materials, such as steel or alloy, can handle higher torque loads and are often used in heavy-duty industrial applications.

Misalignment Capabilities:

Misalignment is a common occurrence in mechanical systems due to factors such as installation errors, thermal expansion, and dynamic forces. Motor couplings are designed to accommodate certain degrees of angular, parallel, and axial misalignment between the motor and driven shafts.

The misalignment capabilities of a motor coupling are specified as angular misalignment, parallel misalignment, and axial misalignment. Angular misalignment refers to the angle between the motor and driven shafts, parallel misalignment refers to the lateral offset between the shafts, and axial misalignment refers to the axial displacement along the shafts.

Flexible couplings, such as elastomeric or grid couplings, offer greater misalignment capabilities compared to rigid couplings like gear couplings. The ability to handle misalignment helps reduce stress on the connected equipment and prolongs the life of the coupling and other mechanical components.

Selecting the Right Coupling:

When selecting a motor coupling, it is crucial to consider the torque and misalignment requirements of the specific application. Engineers and designers need to assess the torque demands of the driven equipment and the potential misalignments that may occur during operation.

Choosing a coupling with adequate torque and misalignment capabilities ensures efficient power transmission, minimizes wear on the equipment, and prevents premature failure. Additionally, the coupling’s operating conditions, environmental factors, and service life expectations should be taken into account to make an informed coupling selection.

In summary, understanding the torque and misalignment capabilities of motor couplings is essential for optimal performance, reliability, and longevity in mechanical power transmission systems.

“`grip coupling

Real-world examples of motor coupling applications in various industrial setups.

Motor couplings find extensive applications across diverse industrial setups, connecting motors to driven equipment and transmitting torque efficiently. Here are some real-world examples of motor coupling applications:

1. Conveyor Systems

In manufacturing and logistics industries, motor couplings are used in conveyor systems to transfer goods and materials from one point to another. Flexible couplings accommodate misalignments between conveyor sections, while backlash in certain couplings helps absorb shocks from the load and avoid damage.

2. Pumps and Compressors

In water treatment plants, chemical processing facilities, and oil refineries, motor couplings are employed in pumps and compressors. Rigid couplings are often used in high-torque applications where precise alignment is critical to maintain pump efficiency and prevent shaft misalignment issues.

3. CNC Machines

In computer numerical control (CNC) machines, motor couplings connect the spindle motor to the cutting tool or workpiece. High precision and low backlash couplings are used to ensure accurate and repeatable movements during machining operations.

4. Printing Presses

In the printing industry, motor couplings are utilized in printing presses to drive paper feeders, ink rollers, and other components. Flexible couplings help absorb vibrations and misalignments, reducing wear on machine parts and improving print quality.

5. Packaging Machinery

Motor couplings are integral to packaging machinery, such as form-fill-seal machines, capping machines, and labeling systems. Couplings facilitate smooth and reliable motion transmission, allowing for precise and efficient packaging processes.

6. Textile Machinery

In textile manufacturing, motor couplings are used in spinning, weaving, and dyeing machines. Couplings accommodate frequent starts and stops, shock loads, and speed variations, ensuring stable and consistent operation.

7. Robotics

In industrial robotics, motor couplings are vital components that connect the motor to the robotic arms and joints. High-performance couplings with low backlash and high torsional stiffness are used to achieve precise and responsive robot movements.

8. Food Processing Equipment

Motor couplings are found in food processing equipment, including mixers, grinders, and slicers. Stainless steel couplings are often used to meet hygiene standards, while flexible couplings protect motors and gearboxes from sudden loads during food processing.

These examples highlight the versatility of motor couplings in various industrial applications. The choice of coupling type depends on factors such as load characteristics, speed requirements, misalignment allowances, and specific environmental conditions in each industrial setup.

“`grip coupling

How to Properly Install a Grid Coupling for Reliable Performance

Proper installation of a grid coupling is crucial for ensuring reliable performance and maximizing its lifespan. Here are the steps to install a grid coupling correctly:

  1. Preparation: Before installation, ensure that the shafts and coupling hubs are clean and free from any debris or contaminants. Inspect the grid coupling and its components for any signs of damage or wear.
  2. Align the Shafts: Make sure that the shafts to be connected are properly aligned. Grid couplings can accommodate some degree of misalignment, but it is essential to minimize it for optimal performance.
  3. Assemble the Grid: Insert the serrated grid element between the two coupling hubs. Ensure that the grid is centered and aligned with the hubs’ teeth.
  4. Tighten the Fasteners: Use the appropriate torque wrench to tighten the fasteners that secure the coupling hubs together. Follow the manufacturer’s recommended torque values to avoid over-tightening or under-tightening.
  5. Check Runout: After installation, check the coupling’s runout by rotating the connected shafts. Excessive runout indicates a potential misalignment or installation issue.
  6. Lubrication: Some grid couplings require lubrication for optimal performance. Refer to the manufacturer’s guidelines and apply the recommended lubricant to the coupling components.
  7. Check for Smooth Operation: Start the machinery and observe the coupling’s operation. Listen for any unusual noises or vibrations that may indicate a problem. If any issues are detected, stop the machinery and inspect the coupling again.
  8. Regular Maintenance: Schedule regular maintenance checks to ensure the coupling’s ongoing reliability. Inspect for signs of wear, misalignment, or damage, and replace any worn or damaged components as needed.

It is essential to follow the manufacturer’s installation guidelines and recommendations specific to the grid coupling model being used. Proper installation and regular maintenance will ensure the grid coupling performs reliably and efficiently, providing effective power transmission in industrial machinery and equipment.

China Custom Custom Steel Material Rigid Shaft Flexible Spring Shaft Coupling Snake Grid Coupling  China Custom Custom Steel Material Rigid Shaft Flexible Spring Shaft Coupling Snake Grid Coupling
editor by CX 2024-04-09

grid coupling

As one of leading grid coupling manufacturers, suppliers and exporters of products, We offer grid coupling and many other products.

Please contact us for details.

Mail:[email protected]

Manufacturer supplier exporter of grid coupling.

 

Recent Posts